Urinary Tumor DNA-Based Diagnosis and Surveillance for Nonmuscle-Invasive Bladder Cancer—Current Landscape and Future Directions

Alexander Shiang,1,2,* Cayce Nawaf,1,3,* Pradeep S. Chauhan,2 Aadel A. Chaudhuri,2,3,4,5,6 Zachary L. Smith1,3 Gautum Agarwal7

1Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, United States 2Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, United States 3Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, United States 4Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, United States 5Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States 6Department of Genetics, Washington University School of Medicine, St. Louis, United States 7Division of Urology, David Pratt Cancer Center, Mercy Hospital, St. Louis, United States

* These authors contributed equally to this work.

Abstract

Bladder cancer has a significant impact on patients, in terms of both morbidity and financial burden. This is especially true for patients with nonmuscle-invasive bladder cancer, who undergo long-term surveillance via cystoscopy and imaging, resulting in significant costs and risks. To address this issue, urinary tumor DNA analysis, or “urinary liquid biopsy,” has emerged as a potential solution to reduce the testing burden and mitigate many of the costs and risks. Over time, urinary tumor DNA analysis has undergone several refinements. However, existing FDA-approved urinary biomarker assays currently lack the sensitivity and specificity to significantly impact clinical decision-making. Subsequent iterations of these technologies have attempted to bridge this gap by improving their diagnostic accuracy, and ultimately, clinical utility. Here, we discuss the current role as well as future directions of urinary tumor DNA analysis for the detection and long-term surveillance of nonmuscle-invasive bladder cancer.

Introduction

Each year, there are over 500,000 new cases of bladder cancer diagnosed worldwide[1]. This places a substantial burden on patients, with estimated annual costs exceeding $100,000 per patient[2–4]. Consequently, the development of efficient and cost-effective methods for early disease detection is of the utmost importance. In current practice, diagnostic workup typically involves a combination of urinalysis, cytology, cystoscopy, and imaging[5]. These tests are also used in the surveillance setting after patients have local treatment with transurethral resection of bladder tumor (TURBT). Cystoscopy, in particular, is associated with increased costs of care and exposes patients to potential discomfort and risks for infection and other complications[6,7]. Compliance with invasive testing can also be an issue for patients, leading to increased rates of progression and recurrence. Additionally, cytology comes with significant limitations in the form of low sensitivity[8]. Previous meta-analyses have demonstrated overall sensitivities ranging from 30% to 40%, with higher-grade disease associated with greater sensitivity. Because of this, surveillance of nonmuscle-invasive bladder cancer (NMIBC) beyond cystoscopy poses great challenges.
There has been growing interest in the application of urinary liquid-biopsy-based assays for the detection and surveillance of NMIBC. Because it is a readily available source, urine has received most of this interest. Urine allows for the potential detection of both genetic material released directly from tumor cells and malignant cells exfoliated into the urine[9]. There are currently several FDA-approved urinary biomarker assays developed for the detection and surveillance of bladder cancer such as ImmunoCyt, NMP22, Urovysion, BTA, and Cabladder[10]. However, these tests exhibit low sensitivities and specificities, leading to poor utility by providers within clinical contexts (Table 1).

While the first-generation urine-based assays did not meet the required performance levels for clinical applications, further efforts have focused on developing tests with improved sensitivities and specificities. These tests aim to be non-invasive, reproducible, and capable of not only detecting initial disease but also serving as a marker for treatment response and disease recurrence, providing real-time information on a patient's disease status. Ideally, these tests should predict the presence or absence of both low-grade and more invasive disease. Such improvements would greatly aid in alleviating the morbidity and economic hardship associated with frequent clinic visits, imaging, and cystoscopy surveillance.

Currently, plasma circulating tumor DNA (ctDNA) tests are used in the invasive and metastatic settings, as well as for monitoring response to immunotherapy[11,12]. The application of urinary tumor DNA (udNA) in a purely non-invasive setting has not yet been established. Therefore, multiple trials are exploring udNA analysis and attempting to characterize tumor biopsy specimens on a molecular basis to improve prognosis and personalize treatment options.

Here, we will highlight an array of exciting past and ongoing investigations related to udNA analysis for NMIBC, which we consider to be at the forefront of the field.

Completed Studies/Trials

UroSEEK (Springer et al.)

The first generation of urinary tumor DNA assays faced significant limitations in both sensitivity and specificity, particularly regarding the detection of low-grade tumors. Springer et al. attempted to address this issue through a combinatorial approach that involved the development of UroSEEK[13]. UroSEEK combined 3 separate tests (TERT singleplex, TERT singleplex, and aneuploidy) to detect mutations in 11 different genes and copy number changes on 39 chromosome arms. UroSEEK positivity was defined as a positive result in any one of these 3 tests, yielding a large increase in the assay's sensitivity.

Patients were divided into 3 cohorts: a detection cohort, a surveillance cohort of those with confirmed bladder cancer, and a surveillance cohort of those with confirmed upper tract urothelial carcinoma. The detection cohort consisted primarily of patients who had presented with microscopic hematuria. It is important to emphasize that hematuria, either microscopic or gross, represents the most common initial presentation for bladder cancer. Therefore, the author's detection group represents a realistic clinical application of their assay within a diagnostic context. Within this group, UroSEEK demonstrated a sensitivity of 83% and specificity of 99.5% for detecting bladder cancer. When combined with cytology, the sensitivity increased to 93%. The tests were estimated the cost of this UroSEEK-cytology combination to be one-third of the cost of cytoscopy alone. In the surveillance cohort, UroSEEK was able to detect recurrence with a sensitivity of 68% and specificity of 80%. On average, UroSEEK positivity preceded the clinical diagnosis of recurrence by 7 months.

UcAPP-Seq (Feber et al.)

After the publication of the initial results from UroSEEK, Dudley et al. attempted to strengthen the diagnostic framework by developing uCAPP-Seq (udtDNA Cancer Personalized Profiling by deep Sequencing), a novel high-throughput sequencing-based hybrid capture assay[14]. uCAPP-Seq captures single nucleotide variants (SNVs), insertions and deletions, and copy number alterations in genomic regions defined to harbor common driver mutations for bladder cancer. The panel was based on data published from The Cancer Genome Atlas (TCGA)[15]. In total, it assays encompassing more than 450 genes and was developed to identify a median of 7 mutations per bladder cancer patient.

Similarly to Springer et al., Dudley et al. tested uCAPP-Seq in both detection and surveillance cohorts. The results improved both tumor-informed and tumor-naive profiling approaches to each group. In the detection cohort, the majority of which exhibited stage pTa (74%) with low-grade disease (54%), their tumor-naive approach achieved a sensitivity of 83% with a specificity of 97%. In comparison, cytology alone had a sensitivity of only 14% and specificity of 100%. As expected, their tumor-informed approach reached an even greater sensitivity of 93% with a specificity of 96%. It is important to note that this approach requires prior tumor and germline sequencing, making it less suitable for disease detection.

In their surveillance cohort of patients who had previously received local bladder cancer treatment, their tumor-naive approach successfully detected disease recurrence in 84% of patients compared with only 36% by cytology. When cytology and cytometry were combined, only 3% of patients who had recurrence were detected, significantly lower than the 84% detected by uCAPP-Seq positivity alone (P = 0.0057).

UroMark (Feber et al.)

Feber et al. developed UroMark, a bisulphite urine sediment test[16] and performed proof-of-concept investigation[16]. This 150-mocli multiplex assay was developed using 86 muscle-invasive bladder cancer (MIBC) patients and 30 healthy controls. It was subsequently validated with an independent cohort consisting of 167 bladder cancer (BC) patients and 274 healthy controls.

The assay itself performed robustly with a sensitivity of 86%, a specificity of 97%, and a negative predictive value (NPV) of 97% for detection of BC. Future investigations will focus on accurately diagnosing patients presenting with hematuria within a clinical context.

Xiao et al.

Xiao et al. continue to advance the diagnostic landscape of NMIBC[17]. They devised a study to comprehensively characterize the entire DNA methylation landscape of bladder cancer to determine the relevant biomarkers for the diagnosis of non-invasive bladder cancer.

In this multicenter, prospective cohort study, the researchers collected 304 samples from 224 donors and performed genome-wide bisulphite sequencing for DNA methylation analysis using Miseq sequencer and a targeted sequence assay for bladder cancer–specific DNA methylation signatures to distinguish tumor tissue from normal urine or MIBC from NMIBC.

Independent validation was performed by double-blinded targeted sequence analysis of urine samples to confirm the clinical diagnosis and prognostic value of DNA methylation-based classification models. The study measured the concordance between pathology results and urinary tumor DNA (udtDNA) methylation, genomic mutations, and other state-of-the-art diagnostic methods. The assay showed positivity in 60% of 60 patients (100%) found to have high-grade bladder cancer on initial TURBT. Additionally, 21 of 57 patients (37%) with a positive DNA methylation signal experienced disease progression. A subset of these patients had negative pathology results on initial TURBT but were later found to harbor bladder cancer on subsequent TURBT. This result further highlights the potential of udNA for early diagnosis before visible tumors are present.

Strangdaa et al.

Strangdaa et al. retrospectively analyzed 156 NMIBC patients who had received Bacillus Calmette-Guérin (BCG) treatment[18]. In all patients, urine samples were available within 90 days of BCG treatment and were compared with BCG. The researchers analyzed the samples for the presence of 92 immuno-oncology–related proteins using the Olink Target 96 Immuno-Oncology Assay (Olink). They found that patients who had experienced disease progression had significantly higher tumor DNA (tDNA) levels in the urine of the post-BCG recurrence group, but no difference was observed in tDNA levels for the pre-BCG samples. Notably, the exhaustion status defined by CD8+ T-cells in tumor was found to be significantly associated with tDNA levels in both the pre- and post-BCG urine samples. They also reported that patients with tDNA clearance after BCG treatment has significantly better recurrence-free survival than patients without clearance.

Additionally, the investigators identified several genes related to cell division and immune function that were upregulated in patients who subsequently developed high-grade recurrence after BCG treatment. They were then able to assign scores based on these genes to predict the likelihood for tumor recurrence. These exciting new urine biomarkers allow for real-time assessment of a patient’s response to standard-of-care treatment.

<table>
<thead>
<tr>
<th>TABLE 1. Reported sensitivity and specificity of commercially available urine-based assays for detecting bladder cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker</td>
</tr>
<tr>
<td>NMP22</td>
</tr>
<tr>
<td>BTA</td>
</tr>
<tr>
<td>Urovysion</td>
</tr>
<tr>
<td>ImmunoCyt</td>
</tr>
<tr>
<td>Cabladder</td>
</tr>
<tr>
<td>UroMark</td>
</tr>
</tbody>
</table>

* Company: Alera, PolyMedica, Vysis, Scimedx, Pacific Edge, ICL Cancer Center
enabling a more personalized approach to patient care.

Ongoing Studies/Trials

Assessment of the Concordance of Genomic Alterations Between Urine and Tissue in High-Risk NMIBC Patients (Trial ID: NCT03563443)

This study from France aims to investigate whether analyzing urine cell-free tumor DNA can predict relapse in high-risk NMIBC. The eligibility criteria will be patients with high-risk BCG-naive NMIBC who are set to undergo treatment with BCG. Urine samples will be collected at various intervals, including before their initial BCG treatment, and at each subsequent instillation. Tumor samples will be collected upon initial TURBT and in the event of relapse. The primary outcome will be the agreement rate between urine cfDNA and tumor tissue samples at diagnosis, focusing on the concordance rate between mutations identified in the tumor. The secondary outcome will be to evaluate the prognostic value of tumor mutational burden (TMB), which will be calculated in the urine cfDNA for each patient.

This study also aims to compare the NMIBC cohort to an MIBC cohort, which will have urine samples collected at each routine clinic visit and have their cfDNA analyzed against their initial diagnosis at TURBT.

Genomic Imprinting Testing for Diagnosis of Bladder Cancer (Trial ID: NCT03563443)

In recent years, increased attention has been devoted toward investigating epigenetic changes such as loss of imprinting (LOI) within cancer cells. These changes have been demonstrated to play key roles in cancer mechanisms such as the development of resistance to chemotherapy and radiotherapy[19]. A novel approach investigating these mechanisms, LisenID, is being developed by LISEN Imprinting Diagnostics company (Wilmington, US). Specifically, this trial aims to broadly investigate tumor LOI patterns to establish a predictive and diagnostic urine-based bladder cancer LOI panel.

Because of their ubiquitous nature, epigenetic changes such as LOI can aid in potentially overcoming issues related to tumor heterogeneity when relying solely on mutational methodologies. Furthermore, data has suggested that LOI often precedes many morphological changes within tumor cells, potentiating expanding the window for their detection and enhancing the sensitivity of urine-based testing for NMIBC.

Previous studies integrating mutational and methylation changes have demonstrated significant improvements in disease detection and surveillance[20-22]. For example, the sensitivity of detecting NMIBC by preexisting single nucleotide variant and copy number–based assays. The aim of these combinatorial techniques will be to maximize the sensitivity of detecting NMIBC for both diagnostic and surveillance purposes. This, in turn, will allow patients with negative results to be safely spared from the financial burden and risks associated with routine cystoscopy. By mitigating morbidity and costs associated with excess cystoscopy, streamlined and efficient personalized care can be delivered[2,3].

Despite early upfront costs, tailored genomic approaches have the potential for alleviating long-term financial strain[24]. A study by Gordon et al. estimated average costs of $3000 for targeted panels and $3000 for whole genome sequencing[25]. These costs could easily be offset by the reduced need for computed tomography (CT) scans and surveillance cystoscopies through the integration of genomic assays. Specifically, these management strategies have been previously modeled to yield cost reductions of up to 9% in low-, intermediate-, and high-risk bladder cancer patients[26].

When developing and evaluating these assays, an important consideration is whether tumor sediment or supernatant should be used, as tumor DNA can be found in both. The DNA present in the supernatant is known as cell-free (cfDNA) and is thought to contain a higher proportion of tumor DNA compared with sediment[27-29]. However, a consensus has yet to be reached on which fraction is optimal.

Figure 1. A schematic illustrating the potential role for liquid biopsy in both the diagnosis and surveillance of NMIBC. Another potential avenue for expansion involves the application of personalized biomarkers derived from a patient's original TURBT sample. This approach could greatly benefit surveillance settings, as demonstrated by studies such as Dudley et al., which showed key improvements in assay sensitivities when using tumor-informed analyses instead of tumor-naïve analyses. Further development of tissue registries and investigations of genomic concordance between urine cfDNA and tissue samples will enable urine-based assays to play an expanded role in guiding clinical management and disease prognostication.

Current, radical cystectomy is a common management strategy for many patients with high-risk, treatment-refractory NMIBC[30,31]. Improvements in urine-based assays can allow for upfront risk stratification and identification of these high-risk patients. This would enable the option of early tumor-informed cystectomy for patients predicted to harbor high-risk NMIBC. The presence of micrometastatic disease represents an additional risk for these patients. While not discussed in this paper, the supplementation of preexisting platform-based assays could aid in early diagnosis and treatment[32].
Conclusion
The current landscape of urine tumor-based testing for NMSC promises significant potential for future improvement and growth. Clinical applications, in both diagnostic and surveillance contexts, will enable providers to offer personalized, precision treatments and management strategies, reducing the risk of financial toxicity associated with unnecessary cystoscopy and diagnostic tests will result in more efficient delivery of care, benefiting both patients and their providers.

References